Mixed Partial Derivatives

In Exercises 51–54, verify that $w_{xy} = w_{yx}$.

51.
$$w = \ln(2x + 3y)$$

Solution:

$$\frac{\partial w}{\partial x} = \frac{2}{2x+3y}$$
, $\frac{\partial w}{\partial y} = \frac{3}{2x+3y}$, $\frac{\partial^2 w}{\partial y \partial x} = \frac{-6}{(2x+3y)^2}$, and $\frac{\partial^2 w}{\partial x \partial y} = \frac{-6}{(2x+3y)^2}$

Using the Partial Derivative Definition

In Exercises 57–60, use the limit definition of partial derivative to compute the partial derivatives of the functions at the specified points.

62. Let $f(x, y) = x^2 + y^3$. Find the slope of the line tangent to this surface at the point (-1, 1) and lying in the **a.** plane x = -1 **b.** plane y = 1.

Solution:

(a) In the plane
$$x = -1 \Rightarrow f_v(x, y) = 3y^2 \Rightarrow f_v(-1, 1) = 3(1)^2 = 3 \Rightarrow m = 3$$

(b) In the plane
$$y = 1 \Rightarrow f_x(x, y) = 2x \Rightarrow f_y(-1, 1) = 2(-1) = -2 \Rightarrow m = -2$$

63. Three variables Let w = f(x, y, z) be a function of three independent variables and write the formal definition of the partial derivative $\partial f/\partial z$ at (x_0, y_0, z_0) . Use this definition to find $\partial f/\partial z$ at (1, 2, 3) for $f(x, y, z) = x^2yz^2$.

Solution:

$$f_z(x_0, y_0, z_0) = \lim_{h \to 0} \frac{f(x_0, y_0, z_0 + h) - f(x_0, y_0, z_0)}{h};$$

$$f_z(1, 2, 3) = \lim_{h \to 0} \frac{f(1, 2, 3 + h) - f(1, 2, 3)}{h} = \lim_{h \to 0} \frac{2(3 + h)^2 - 2(9)}{h} = \lim_{h \to 0} \frac{12h + 2h^2}{h} = \lim_{h \to 0} (12 + 2h) = 12$$

Differentiating Implicitly

66. Find the value of $\partial x/\partial z$ at the point (1, -1, -3) if the equation

$$xz + y \ln x - x^2 + 4 = 0$$

defines x as a function of the two independent variables y and z and the partial derivative exists.

Solution:

$$\left(\frac{\partial x}{\partial z}\right)z + x + \left(\frac{y}{x}\right)\frac{\partial x}{\partial z} - 2x\frac{\partial x}{\partial z} = 0 \Rightarrow \left(z + \frac{y}{x} - 2x\right)\frac{\partial x}{\partial z} = -x \Rightarrow \text{at } (1, -1, -3) \text{ we have } (-3 - 1 - 2)\frac{\partial x}{\partial z} = -1 \text{ or } \frac{\partial x}{\partial z} = \frac{1}{6}$$

Show that each function in Exercises 73–80 satisfies a Laplace equation.

Hint: Laplace equation in rectangular coordinates given by

$$abla^2 f = rac{\partial^2 f}{\partial x^2} + rac{\partial^2 f}{\partial y^2} + rac{\partial^2 f}{\partial z^2} = 0.$$

Solution:

$$\begin{split} &\frac{\partial f}{\partial x} = -\frac{1}{2} \left(x^2 + y^2 + z^2 \right)^{-3/2} (2x) = -x \left(x^2 + y^2 + z^2 \right)^{-3/2}, \\ &\frac{\partial f}{\partial y} = -\frac{1}{2} \left(x^2 + y^2 + z^2 \right)^{-3/2} (2y) = -y \left(x^2 + y^2 + z^2 \right)^{-3/2}, \\ &\frac{\partial f}{\partial z} = -\frac{1}{2} \left(x^2 + y^2 + z^2 \right)^{-3/2} (2z) = -z \left(x^2 + y^2 + z^2 \right)^{-3/2}; \\ &\frac{\partial^2 f}{\partial x^2} = -\left(x^2 + y^2 + z^2 \right)^{-3/2} + 3x^2 \left(x^2 + y^2 + z^2 \right)^{-5/2}, \\ &\frac{\partial^2 f}{\partial y^2} = -\left(x^2 + y^2 + z^2 \right)^{-3/2} + 3y^2 \left(x^2 + y^2 + z^2 \right)^{-5/2}, \\ &\frac{\partial^2 f}{\partial z^2} = -\left(x^2 + y^2 + z^2 \right)^{-3/2} + 3z^2 \left(x^2 + y^2 + z^2 \right)^{-5/2} \\ &\Rightarrow \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = \left[-\left(x^2 + y^2 + z^2 \right)^{-3/2} + 3x^2 \left(x^2 + y^2 + z^2 \right)^{-5/2} \right] \\ &+ \left[-\left(x^2 + y^2 + z^2 \right)^{-3/2} + 3y^2 \left(x^2 + y^2 + z^2 \right)^{-5/2} \right] + \left[-\left(x^2 + y^2 + z^2 \right)^{-3/2} + 3z^2 \left(x^2 + y^2 + z^2 \right)^{-5/2} \right] \\ &= -3 \left(x^2 + y^2 + z^2 \right)^{-3/2} + \left(3x^2 + 3y^2 + 3z^2 \right) \left(x^2 + y^2 + z^2 \right)^{-5/2} = 0 \end{split}$$