Mixed Partial Derivatives

In Exercises 51-54, verify that $w_{x y}=w_{y x}$.

51. $w=\ln (2 x+3 y)$

Solution:

$$
\frac{\partial w}{\partial x}=\frac{2}{2 x+3 y}, \quad \frac{\partial w}{\partial y}=\frac{3}{2 x+3 y}, \quad \frac{\partial^{2} w}{\partial y \partial x}=\frac{-6}{(2 x+3 y)^{2}}, \text { and } \frac{\partial^{2} w}{\partial x \partial y}=\frac{-6}{(2 x+3 y)^{2}}
$$

Using the Partial Derivative Definition

In Exercises 57-60, use the limit definition of partial derivative to compute the partial derivatives of the functions at the specified points.
62. Let $f(x, y)=x^{2}+y^{3}$. Find the slope of the line tangent to this surface at the point $(-1,1)$ and lying in the a. plane $x=-1$ b. plane $y=1$.

Solution:

(a) In the plane $x=-1 \Rightarrow f_{y}(x, y)=3 y^{2} \Rightarrow f_{y}(-1,1)=3(1)^{2}=3 \Rightarrow m=3$
(b) In the plane $y=1 \Rightarrow f_{x}(x, y)=2 x \Rightarrow f_{y}(-1,1)=2(-1)=-2 \Rightarrow m=-2$
63. Three variables Let $w=f(x, y, z)$ be a function of three independent variables and write the formal definition of the partial derivative $\partial f / \partial z$ at $\left(x_{0}, y_{0}, z_{0}\right)$. Use this definition to find $\partial f / \partial z$ at $(1,2,3)$ for $f(x, y, z)=x^{2} y z^{2}$.

Solution:

$$
\begin{aligned}
& f_{z}\left(x_{0}, y_{0}, z_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}, y_{0}, z_{0}+h\right)-f\left(x_{0}, y_{0}, z_{0}\right)}{h} \\
& f_{z}(1,2,3)=\lim _{h \rightarrow 0} \frac{f(1,2,3+h)-f(1,2,3)}{h}=\lim _{h \rightarrow 0} \frac{2(3+h)^{2}-2(9)}{h}=\lim _{h \rightarrow 0} \frac{12 h+2 h^{2}}{h}=\lim _{h \rightarrow 0}(12+2 h)=12
\end{aligned}
$$

Differentiating Implicitly

66. Find the value of $\partial x / \partial z$ at the point $(1,-1,-3)$ if the equation

$$
x z+y \ln x-x^{2}+4=0
$$

defines x as a function of the two independent variables y and z and the partial derivative exists.

Solution:
$\left(\frac{\partial x}{\partial z}\right) z+x+\left(\frac{y}{x}\right) \frac{\partial x}{\partial z}-2 x \frac{\partial x}{\partial z}=0 \Rightarrow\left(z+\frac{y}{x}-2 x\right) \frac{\partial x}{\partial z}=-x \Rightarrow$ at $(1,-1,-3)$ we have $(-3-1-2) \frac{\partial x}{\partial z}=-1$ or $\frac{\partial x}{\partial z}=\frac{1}{6}$

Show that each function in Exercises 73-80 satisfies a Laplace equation.

Hint: Laplace equation in rectangular coordinates given by

$$
\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}=0 .
$$

Solution:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=-\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}(2 x)=-x\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}, \\
& \frac{\partial f}{\partial y}=-\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}(2 y)=-y\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2} \text {, } \\
& \frac{\partial f}{\partial z}=-\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}(2 z)=-z\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2} ; \\
& \frac{\partial^{2 f}}{\partial x^{2}}=-\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}+3 x^{2}\left(x^{2}+y^{2}+z^{2}\right)^{-5 / 2} \text {, } \\
& \frac{\partial^{2 f}}{\partial y^{2}}=-\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}+3 y^{2}\left(x^{2}+y^{2}+z^{2}\right)^{-5 / 2} \text {, } \\
& \frac{\partial^{2 f}}{\partial z^{2}}=-\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}+3 z^{2}\left(x^{2}+y^{2}+z^{2}\right)^{-5 / 2} \\
& \Rightarrow \frac{\partial^{2} f}{\partial x^{2}} \frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}=\left[-\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}+3 x^{2}\left(x^{2}+y^{2}+z^{2}\right)^{-5 / 2}\right] \\
& +\left[-\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}+3 y^{2}\left(x^{2}+y^{2}+z^{2}\right)^{-5 / 2}\right]+\left[-\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}+3 z^{2}\left(x^{2}+y^{2}+z^{2}\right)^{-5 / 2}\right] \\
& =-3\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}+\left(3 x^{2}+3 y^{2}+3 z^{2}\right)\left(x^{2}+y^{2}+z^{2}\right)^{-5 / 2}=0
\end{aligned}
$$

